

Run IIb Detector Upgrade Installation

Orientation

George Ginther 25-October-2005

on behalf of the DØ Collaboration

Run IIb Detector Upgrade

- Run IIb Upgrade Project is a suite of upgrades designed to prepare the DØ detector to effectively handle larger integrated and instantaneous luminosities
 - Tracking Upgrades
 - · Layer O Silicon Detector
 - Enhanced front-end boards for Central Fiber Tracker (AFE II)
 - Trigger Upgrades to keep trigger rates in check See talk by D. Wood
 - · Level 1 --- Central Track Trigger, Calorimeter Trigger, Cal Track Match
 - Level 2 ---Silicon Track Trigger, Processor Upgrades
 - DAQ/Online System Upgrades to handle data rates
- Installation is not formally part of the Upgrade Project
 - But the dedicated people who have produced the upgrade are essential to effective and timely installation, commissioning and operation of these upgrades
 - Personnel who have been responsible for various aspects of the upgrade project are involved in overseeing the installation and commissioning efforts

Layer O Silicon

- Detector
 - Additional layer of silicon detectors designed to fit inside the current Silicon Microstrip Tracker
 - · Mitigate tracking losses due to radiation damage and detector aging
 - · Provides more robust tracking and pattern recognition to accommodate higher instantaneous luminosities
 - Improves impact parameter resolution
 - 12288 channels

See talk by R. Lipton

- Completed assembly undergoing final mechanical and electrical tests
- Installation
 - Tight clearances and substantial work handling and surrounded by delicate components
 - · Requires detailed planning, numerous detector reconfigurations, and significant expertise, tooling and technique developments
 - Compromises Tevatron vacuum
 - Requires significant collision hall access

See talks by B. Cooper and L. Bagby

Central Track Trigger

- · Level 1 Central Track Trigger Upgrade
 - Replace 40 Digital Front End Analog Boards and associated infrastructure with DFEA2
 - improve fake rejection capability of Central Track Trigger at higher occupancies due to increasing instantaneous luminosities
 - makes use of full granularity of Central Fiber Tracker inputs
 - All hardware produced and tested
 - Two DFEA2 boards were running on platform with signals from splitters for many months, and results have been verified against performance of current boards

Installation

- Requires several weeks of collision hall access to remove current boards and install replacements
 - · Activity on platform will not interfere with Layer O installation
- Requires intermittent access thereafter for debugging and verification of cabling

See talk by S. Gruenendahl

Calorimeter Trigger

- Level 1 Calorimeter Trigger Upgrade
 - Replace 10 racks of Run I calorimeter trigger electronics
 - 80 Analog to Digital Filters (ADFs)
 - 8 Trigger Algorithm Boards (TABs)
 - · 1 Global Algorithm Board (GAB)
 - Sharpens trigger turn-on curves
 - Provides specific object ID at Level 1 (electrons, jets, taus)
 - System testing of upgraded Level 1 trigger electronics using signals split from detector in progress on sidewalk outside Movable Counting House
- Installation
 - Does not require collision hall access
 - Trigger racks located in Movable Counting House
 - However, new electronics physically displaces current Level 1 Calorimeter trigger electronics

More Trigger Upgrades

- Level 1 Calorimeter Track Match
 - Electronics to provide new capability to match calorimeter and track objects at Level 1
 - Improved rejection and tau triggering capability
 - System testing in progress
 - Installation nearly complete
 - Requires change in trigger timing to accommodate this upgrade
- Level 2 Silicon Track Trigger
 - Additional electronics to include Layer 0 detector inputs in Silicon Track Trigger
 - To be installed in Movable Counting House
- Level 2 Processor Upgrades
 - Facilitates handling of more complex events and implementation of improved algorithms
 - Installation in progress (no collision hall access required)

Run IIb Detector Upgrades

- DAQ/Online upgrades to facilitate handling higher instantaneous luminosities and increased data rates
 - Enhance Level 3 processor power
 - Upgrade database and host servers
 - Upgrade slow control system processors
 - These upgrades have been implemented without significant interruption of other ongoing activities
- · AFE II (Analog Front End II)
 - Replacement for readout electronics for Central Fiber Tracker
 - · To address saturation, pedestal shifts and enhance performance
 - Designed to be plug compatible with current AFE to allow adiabatic installation during brief accesses (~200 boards to be installed)
 - Still in prototype phase
 - Had been planning to install and test prototypes on platform in collision hall during December or January
 - Will still likely want to perform these tests prior to production
 Requires short accesses
 - Installation not currently scheduled to occur during the upcoming shutdown

Project Status

- Project is making impressive technical progress
 - All components of the trigger are built and benchtested
 - Most components have already been tested at DØ
 - Extensive integration tests ongoing to ensure smooth turn on after installation
 - Layer O fully assembled
 - · Electrical and mechanical tests ongoing
 - Installation tooling in final phases
 - Online systems on schedule

Excerpt from presentation by V. O'Dell on Run IIb Project Status At International Finance Committee Meeting on 20 October 2005

Installation Strategy

- Minimize integrated luminosity cost
 - Take full advantage of the suite of upgrades as soon as possible
 - Use mock-ups and perform system tests where feasible to reduce risk and installation/commissioning time
 - Simultaneous installation of disruptive upgrade components as rapidly as can be safely and reliably accomplished

Preparing for Installation

- Layer O clearance measurements during 2004 shutdown
 - Provided valuable experience for team that will be involved in this installation
 - Provided insights that are integrated into the shutdown schedule
- Mock-ups of relevant regions of detector to exercise tools and procedures for Layer 0 installation
- · Infrastructure development and system testing
 - Full system technical commissioning prior to installation
 - Parallel slice tests for Level 1 Calorimeter trigger
 - Splitters provide signals from detector
 - In-situ tests
 - Readout of Layer 0 modules mounted in collision hall during 2004
 - Testing of parallel Level 1 Central Track Trigger slice implemented using signals from detector
 - Developing upgrade version of strawman trigger list
 - Pushing development of software

Layer O Installation

- Shutdown duration driven by Layer 0 installation
 - Layer 0 installation involves tight clearances (<1mm), long objects (~2 m) and complex and infrequently performed operations
 - For sake of personnel, detector and Tevatron program, these tasks must be performed carefully and safely
 - Numerous reconfigurations of large DØ detector elements
 - Much of the activity in tight space surrounded by delicate equipment
 - · requires body awareness and attention to detail
 - Several delicate operations
 - Some activities require long arms and steady hands
 - Significant expertise required

Installation Schedule

- Installation schedule implemented in MS Project
 - Assumes 5 day work week

See talk by R. Smith

- Includes lab holidays
- Parallel tasks implemented where detector configurations allow
- 14 week duration
 - Second shift activities when appropriate
 - · ~25% schedule contingency
- Maintenance activities must also be integrated into the shutdown planning
 - These activities will be interleaved appropriately

Scheduling the Shutdown

- Now that the lab shutdown schedule has been firmly established, the lab and the collaboration are in the process of refining understandings of resource availability and assignments
 - A firm date is clearly important for certain aspects of planning
- The shift in schedule does have impact on plans
 - Travel arrangements/visas
 - Sabbaticals
 - Students and post docs
 - We have requested assistance in adjusting to this shift
 - Resources
 - · Access for AFEII testing
- · Make effective use of situation
 - Move towards incorporating test systems into routine operation
 - Plan to go through practice round of Layer O installation at mock-up just prior to the start of shutdown as a refresher

Summary

- Upgrade preparations are well advanced
 - Layer 0
 - Mockups and associated tooling developed and tested
 - Exercising/refining Layer 0 installation techniques
 - Trigger
 - Running system tests
- Installation shutdown preparations are well underway
 - 1 March 2006 through 6 June 2006
 - 14 week duration
 - The installation schedule includes approximately 25% schedule contingency in the 14 week shutdown duration (including Saturdays and double shifting)
 - This level of contingency is not excessive given the nature of the tasks to be undertaken
 - We plan double shift operations in attempt to bank some of this contingency
 - Successful installation will depend upon vigorous participation of collaborators and significant lab support
 Director's Review of Run IIb Detector Upgrade Installation